Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
0b7e25c2
Commit
0b7e25c2
authored
Feb 10, 2016
by
Ralf Jung
Browse files
make auth_closing less stupid
parent
05b7229d
Changes
2
Hide whitespace changes
Inline
Sidebyside
algebra/auth.v
View file @
0b7e25c2
...
...
@@ 147,8 +147,12 @@ Proof. done. Qed.
Lemma
auth_both_op
a
b
:
Auth
(
Excl
a
)
b
≡
●
a
⋅
◯
b
.
Proof
.
by
rewrite
/
op
/
auth_op
/=
left_id
.
Qed
.
(* FIXME tentative name. Or maybe remove this notion entirely. *)
Definition
auth_step
a
a'
b
b'
:
=
∀
n
af
,
✓
{
n
}
a
→
a
≡
{
n
}
≡
a'
⋅
af
→
b
≡
{
n
}
≡
b'
⋅
af
∧
✓
{
n
}
b
.
Lemma
auth_update
a
a'
b
b'
:
(
∀
n
af
,
✓
{
n
}
a
→
a
≡
{
n
}
≡
a'
⋅
af
→
b
≡
{
n
}
≡
b'
⋅
af
∧
✓
{
n
}
b
)
→
auth_step
a
a'
b
b'
→
●
a
⋅
◯
a'
~~>
●
b
⋅
◯
b'
.
Proof
.
move
=>
Hab
[[?
]
bf1
]
n
//
=>[[
bf2
Ha
]
?]
;
do
2
red
;
simpl
in
*.
...
...
program_logic/auth.v
View file @
0b7e25c2
...
...
@@ 58,14 +58,8 @@ Section auth.
by
rewrite
sep_elim_l
.
Qed
.
(* TODO: This notion should probably be defined in algebra/,
with instances proven for the important constructions. *)
Definition
auth_step
a
b
:
=
(
∀
n
a'
af
,
✓
{
n
}
(
a
⋅
a'
)
→
a
⋅
a'
≡
{
n
}
≡
af
⋅
a
→
b
⋅
a'
≡
{
n
}
≡
b
⋅
af
∧
✓
{
n
}
(
b
⋅
a'
)).
Lemma
auth_closing
a
a'
b
γ
:
auth_step
a
b
→
auth_step
(
a
⋅
a'
)
a
(
b
⋅
a'
)
b
→
(
φ
(
b
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
⊑
pvs
N
N
(
auth_inv
γ
★
auth_own
γ
b
).
Proof
.
...
...
@@ 73,8 +67,7 @@ Section auth.
rewrite
[(
_
★
φ
_
)%
I
]
commutative

associative
.
rewrite

pvs_frame_l
.
apply
sep_mono
;
first
done
.
rewrite

own_op
.
apply
own_update
.
apply
auth_update
=>
n
af
Ha
Heq
.
apply
Hstep
;
first
done
.
by
rewrite
[
af
⋅
_
]
commutative
.
by
apply
auth_update
.
Qed
.
End
auth
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment